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Abstract

Anchor selection or learning has become a critical compo-
nent in large-scale multi-view clustering. Existing anchor-
based methods, which either select-then-fix or initialize-then-
optimize with orthogonality, yield promising performance.
However, these methods still suffer from instability of initial-
ization or insufficient depiction of data distribution. More-
over, the desired properties of anchors in multi-view clus-
tering remain unspecified. To address these issues, this pa-
per first formalizes the desired characteristics of anchors,
namely Diversity, Balance and Compactness. We then devise
and mathematically validate anchors that satisfy these prop-
erties by maximizing the Mahalanobis distance between an-
chors. Furthermore, we introduce a novel method called Max-
Mahalanobis Anchors Guidance for multi-vlew Clustering
(MAGIC), which guides the cross-view representations to
progressively align with our well-defined anchors. This pro-
cess yields highly discriminative and compact representa-
tions, significantly enhancing the performance of multi-view
clustering. Experimental results show that our meticulously
designed strategy significantly outperforms existing anchor-
based methods in enhancing anchor efficacy, leading to sub-
stantial improvement in multi-view clustering performance.

1 Introduction

In the information era, various data forms provide distinct
perspectives, but single perspective often overlooks the com-
plexity and heterogeneity of data. For instance, in bioinfor-
matics, behaviors of organisms are influenced by gene ex-
pression, protein-protein interaction and phenotypic char-
acteristics. Isolating any single view may lead to incom-
plete conclusions (Rappoport and Shamir 2018). Multi-view
clustering (MVC) tackles this by jointly analyzing multiple
views to uncover their interrelations, with current method-
ologies focus on three core objectives: better representation
(Gao et al. 2015; Sun et al. 2021; Yang et al. 2023), better
alignment (Zhang et al. 2021; Wang et al. 2022) and better
fusion (Kang et al. 2020a; Li et al. 2020; Zhang et al. 2023),
which are also essential for handling missing views (Li et al.
2023b; Jin et al. 2023; Wen et al. 2023; Yu et al. 2024).
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The rapid growth of technology has led to a surge of
multi-view data, providing new insights but posing chal-
lenges in large-scale data processing. Efficient clustering has
emerged as a critical research focus, with mainstream ap-
proaches leveraging anchors to avoid associating all sam-
ples. This paper categorizes these anchor-based MVC meth-
ods into two groups: fixed-anchor-based MVC (Li et al.
2015; Li and He 2020; Kang et al. 2020b) and optimized-
anchor-based MVC (Wang et al. 2021; Chen et al. 2022b;
Li et al. 2023b; Ou et al. 2024). Fixed-anchor-based MVC
typically generates anchors through pre-processing methods
such as k-means or sampling strategies. Sampling methods,
whether random or heuristic, are simple and efficient but of-
ten lead to poor and unstable performance due to random-
ness and weak structural relevance (Xia et al. 2022; Li et al.
2020). Besides, sampling may introduce more challenges,
such as discrepancies in anchor correspondence across
views. Instead, using k-means cluster centers as the anchors
generally improves performance by leveraging clustering-
relevant information in anchors (Kang et al. 2020b; Li and
He 2020; Yang et al. 2022). However, k-means is sensi-
tive to initialization, requiring multiple runs to mitigate ran-
domness, and incorrect anchor initialization may cause dis-
appointed clustering results. Optimized-anchor-based MVC
improves upon the fixed-anchor strategy by incorporating
anchors directly into the multi-view clustering optimization
process. These methods typically employ the self-expression
concept but use representative points to establish relation-
ships with all samples. To ensure anchor representativeness,
they generally impose orthogonal constraints to enforce di-
versity among anchors (Wang et al. 2021; Liu et al. 2022).

In summary, fixed-anchor-based MVC and optimized-
anchor-based MVC each have distinct advantages and lim-
itations. Fixed-anchor methods, derived from the original
data space, aim to select anchors that better fit the data but
face challenges with initialization instability and the com-
plexity of heuristic design strategies. On the other hand,
optimized-anchor methods learn anchors dynamically, mak-
ing the acquisition of anchors less manual and more di-
verse through orthogonal constraints. However, these con-
straints can overly restrict anchor fitting performance, espe-
cially when the number of anchors is large.



Given the above research findings, this paper proposes an
explicit definition of desirable anchors in multi-view clus-
tering. In multi-view clustering, we expect to obtain a set
of common anchors that possess three key properties: Di-
versity, Balance, and Compactness. Specifically, Diversity
implies that the obtained anchors should be as dissimilar as
possible, maximizing inter-cluster distances and facilitating
more distinguishable data representations. Balance refers to
the equilibrium between anchors across multi-view data, en-
suring robust and stable structure. Data usually lie on a low-
dimensional manifold within a high-dimensional space, ex-
hibiting a more compact rather than uniform distribution. As
a sketch of the data, the distribution of anchors should also
maintain Compactness while satisfying the above two crite-
ria, avoiding unnecessary increases in their dimensionality.
Revisiting previous anchor-based methods with our defined
anchor properties, we conclude that fixed-anchor methods
mainly focus on balance, selecting anchors to effectively
cover the data distribution. On the other hand, optimized-
anchor methods emphasize diversity, striving to learn signif-
icantly different anchors to separate the data. However, or-
thogonal constraints on anchors may be overly restrictive,
potentially limiting the model’s representational capacity.
Besides, this can impede data point discrimination in high-
dimensional spaces due to the curse of dimensionality.

Since the ultimate goal of algorithmic models is to contin-
uously fit data to anchors (either fixed or optimized), anchors
with superior characteristics can guide the representation to
be more discriminative, thereby achieving enhanced cluster-
ing performance. In light of the aforementioned analysis,
we aim to provide an explicit definition of anchor proper-
ties and propose a design strategy for obtaining optimal an-
chors that satisfy these definitions. Integrating these anchors
into our multi-view clustering framework can lead to supe-
rior data representations, thereby improving clustering per-
formance. Specifically, we propose an optimal anchor design
strategy called Max-Mahalanobis Anchors (MMA), which
is carefully designed by maximizing the minimum angle
between any two anchors, thereby achieving the promising
iter-cluster dispersion effect. This paper then leverages the
superior properties inherent in the MMA to achieve more
efficacious re-representations of multi-view data, resulting
in enhanced clustering performance. In summary, the main
contributions of this paper are as follows:

* This paper provides formal definitions and mathematical
formulation for the desirable properties (Diversity, Bal-
ance and Compactness) of anchors, revealing the defi-
ciency of current anchor-based MVC methods.

This paper proposes a rational-design anchor strategy,
termed Max-Mahalanobis Anchors (MMA), satisfying
the expected properties of anchors with theoretical proof.
We integrate the novel MMA into our multi-view cluster-
ing framework, guiding the consensus representation to
gradually align with our well-designed structure.

Extensive experiments demonstrate our method’s effec-
tiveness. Comparisons with anchor-based MVC highlight
our superior anchor performance and data fitting effects,
validating the outstanding properties of MMA.
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2 Related Work

In this section, we review the rationale and literature of
anchor-based multi-view clustering methods. Then, the most
relevant algorithms are introduced in detail. The key nota-
tions used throughout this paper are listed in Tab. 1.

Notation Description

N,K,V Number of samples, clusters and views
d; Feature dimension of i-th view

X@) e RN*di  Data matrix in the i-th view
XS):] j-th row/sample in the i-th view

e The first unit basis vector
(1]% The zero vector in R¥
Ik Identity matrix of size K.

Table 1: Description of notations.

Anchor-based multi-view clustering methods have gained
focus for their efficiency in large-scale scenarios, which in-
volve using a small subset of representative points. Both
fixed and optimized anchor-based methods fundamentally
aim to associate original instances with a few representative
points, thereby avoiding exploring global relationships.

Fixed-anchor methods in MVC typically determine an-
chors through random sampling, k-means or heuristic strate-
gies for subsequent clustering tasks. While random sampling
is simple and efficient, it often leads to unstable and un-
satisfactory clustering results. Furthermore, researchers de-
sign meticulously crafted algorithms to directly sample data
points as anchors (Xia et al. 2022). To enhance represen-
tativeness, Li et al. propose that anchors should compre-
hensively cover the data distribution, alternately sampling
based on feature similarity across clusters. For more cluster-
informed anchors, many studies rely on k-means clustering
to generate fixed anchors (Li et al. 2015; Yang et al. 2020;
Li and He 2020; Yang et al. 2022). Similarly, Kang et al. re-
place the self-expression in multi-view subspace clustering
with anchor-samples expression, enabling subspace-based
methods to scale to large clustering scenarios.

Unlike fixed-anchor approaches, optimized-anchor meth-
ods adopt an integrated framework to simultaneously opti-
mize orthogonal anchors and construct anchor graphs. Rep-
resentative studies (Sun et al. 2021; Wang et al. 2021)
demonstrate that optimized-anchor are more representative
than fixed ones and propose to optimize the orthogonal an-
chors and construct an anchor graph in a unified framework.
Based on this, Liu et al. propose a one-pass approach to di-
rectly obtain the clustering labels by imposing graph con-
nectivity constraints on the anchor graph (Liu et al. 2022).
Subsequent variants of orthogonal optimization methods in-
corporate advancements in fusion (Zhang et al. 2023; Wang
et al. 2022; Zhang et al. 2022; Li et al. 2023b), noise (Li
et al. 2023a; Liu et al. 2024b), and graph constraints (Liu
et al. 2024b,a; Yu et al. 2023; Li et al. 2024) and so on.

Despite the success of the current anchor-based MVC
method over the earlier sampling methods, several essential
issues persist. Fixed-anchor-based methods provide compu-



tational simplicity with improved fitness and balance in the
original space. However, the inherent randomness of random
sampling and k-means-based methods can undermine algo-
rithmic stability. Moreover, designing anchor selection algo-
rithms is often heuristic and challenging. Optimized-anchor-
based methods enhance anchor diversity and reduce man-
ual design effort through orthogonal constraints. Neverthe-
less, these constraints introduce a trade-off between fitting
the data and maintaining orthogonality during optimization,
limiting the compactness of representations. In summary,
while existing anchor-based methods offer distinct advan-
tages, the specific characteristics that anchors should pos-
sess for multi-view clustering have not yet been explicitly
defined. To address this gap, the following sections formal-
ize the definitions of anchor properties and introduce a novel
method designed to satisfy them.

3 Methodology

This section begins with the definition of anchor properties
and the construction of anchors. Then, we demonstrate its
integration within our multi-view clustering framework.

3.1 Definition of Desired Anchors

In anchor-based multi-view clustering, we aim to obtain an-
chors with desirable properties to provide better guidance
for multi-view data representation learning. Conceptually,
we aspire for the anchors to exhibit properties of Diversity,
Balance, and Compactness. However, it is challenging to
constrain the anchors with these properties simultaneously.
To achieve this, we propose to leverage the angular relation-
ships between anchors and formulate the following three key
definitions of anchor property.

Firstly, Definition 1 formalizes the concept of Diversity
that the desired anchor should be as distinct as possible to fa-
cilitate discriminative capacity. We define this diversity met-
ric by considering the mean of the angles between all unique
pairs of anchors to be as large as possible, ensuring that an-
chors are apart from each other.

Definition 1 (Diversity). Given a set of K anchors
pw = {w K, the angle between any two distinct an-
chors p; and p; is defined as ;5. The average angle 0 is
defined as 6 = ﬁZgiqu 0;;. If the condition
90° < § < 180°, or equivalently —1 < cosf < 0, is satis-
fied, the set of anchors p is characterized as possessing the
Diversity property.

Secondly, Definition 2 formalizes the concept of Bal-

ance that anchors should be distributed relatively uniformly,
thereby creating a more robust and stable structure. We
quantify balance by measuring the variance of angles be-
tween different anchor vectors.
Definition 2 (Balance). Given p = {p;}X,, a set of K
anchor. Angle 0;; is defined for any two distinct anchors. If
0;; satisfies the condition in Eq. (1), the set of anchors p is
characterized as possessing the Balance property.

Var({6;;]1 <i < j < K}) <e, (1)

where 0;; = arccos ((/LIMJ)/(||MH2||M]||2)) € is a non-
negative threshold. Var(-) is the variance.

22490

Last but not least, while satisfying Diversity and Bal-
ance, the anchor distribution should be as compact as possi-
ble, which means occupying as small space as possible and
avoiding unnecessary increases in dimensionality.
Definition 3 (Compactness). Given anchors p = {u;}5,
let D = dim({u;},) denote the dimensionality of the
space spanned by the anchors. Under the conditions spec-
ified by Definition 1 and Definition 2, if the D of one set of
anchors is less than that of another set, then the set with the
smaller D is said to possess better compactness.

We have thus far presented three desirable properties of
anchors. In the next subsection, we will introduce how to
generate anchors that conform to these expectations.

3.2 Generate Max-Mahalanobis Anchors

Unlike previous approaches that relied on unstable initializa-
tion or rigid orthogonality constraints on anchors, we pro-
pose to simultaneously consider Diversity, Balance, Com-
pactness criteria for anchors. Anchors satisfying these cri-
teria leverage geometric properties for a diverse and uni-
form distribution of anchors within a compact space. Specif-
ically, we propose a strategy called Max-Mahalanobis An-
chors (MMA) to achieve these properties.

We approach the problem from the perspective of angular
relationships between anchors, aiming to maximize the min-
imum angle between any pair of distinct anchors. Mathemat-
ically, denoting the angle between anchors p; and p; as 6,5,
we formulate the problem as: pu* = arg max, min;-; 0;;.
Intuitively, this criterion aims to maximize the angle be-
tween any two centers, which means that the anchors are
as distant from each other as possible in the anchor feature
space. Such dispersion enhances the model’s discrimination
capacity by reducing inter-cluster overlap, as demonstrated
in (Pang, Du, and Zhu 2018; Pang et al. 2020). However,
it is difficult to directly manipulate angles when generat-
ing anchors, so we instead manipulate the Mahalanobis dis-
tance to generate the desired anchors. We define the Ma-
halanobis distance between any two anchors p; and p; as

1

Aij = [(ps — pj)E (i — py)] *, and the target problem

can be equivalently transformed into the following form:

1

* = in ~AZ. 2
p = ArgmAxIin o Aj 2
Denoting the minimal distance as MiD = min;; %A?j
and ||u;||3 = C, Vi € [K], where C is a positive constant,
the following theorem provides a tight upper bound of MiD.
Theorem 1. Given a set of anchors p = {u;}X, where

Zfil wi = O and ||;||3 = C, we can derive an upper
bound for MiD:
KC

K-1
The equality holds if and only if
c i=7
T, = ’
e {O/u ~K) i#],
where 1 <1 < j < K. See Appendix for detailed proof.

MiD <

3)



A set of anchors that satisfies Eq. (3) is the optimal an-
chors p*, denoted as Max-Mahalanobis Anchors (MMA) in
this paper, indicating that they reach the maximum of the
minimal Mahalanobis distance between any two distinct an-
chors. To achieve this condition, we design the following
strategy to obtain anchors that meet the desired criteria:

a) Initialization: Initialize u = e; and p = Ox Vi > 2,
where e; = [1,0,---,0]7 € R¥ is first unit basis vector
and Og is a K-dimension zero vector.

b) Recursive generation: Starting from p3, recursively gen-
erate anchors according to Eq. (4):

=+,

*( - (5 (D
1) = { NSRS “

V 1- ||1U’:<||2 J=1

where2 <i< Kand1 <j <q.
¢) Uniform scaling: Apply a uniform scaling to the anchors

by setting pif = /C - ut, Vk € [K].

Upon completing the design of MMA, we demonstrate
through Theorems 2 and Theorems 3 that the optimal p*
generated by MMA satisfy the aforementioned properties
defined in Definition 1-3.

Theorem 2. Our Max-Mahalanobis Anchors p* satisfies
the Diversity property in Definition 1, i.e., the average an-

gle between any two distinct anchors in p* lies between 90°
and 180°.

Proof. Since our MMA p* satisfies Eq. (3), when C' = 1,
the angle 6;; between any ; and p; is constant, i.e.,
1 H

1
— 2 ) = arccos | —— |,
||Mi||2||ﬂj|2> <1—K)

where 1 < ¢ < j < K and K is the number of clusters.
Therefore, the average angle satisfies

2
—_— Z 0;; = arccos(
K(K-1) 1<i<j<K

0;; = arccos <

1
1-K

g )
Given that K > 2 (as there must be at least two clusters),
we have = € [—1,0), consequently 6 € (90°,180°]. O

Theorem 3. Our Max-Mahalanobis Anchors p* possess the
Balance property in Definition 2. Particularly, the angles be-
tween any two distinct anchors in p* are the same and the
variance of them is thus zero.

Proof. Similar to the proof of Theorem 2, the angle 6;;
between any two distinct anchors is constant, i.e., 8;; =
arccos(12%),1 < i < j < K.Let © = {0;;]i # j}.
the variance of the angles between any two distinct anchors
satisfies Var(0) = 0, indicating that the MMA possess the
Balance property with ¢ = 0. O

To elucidate the Compactness of MMA, we provide
an intuitive understanding of the shape of MMA in low-
dimensional cases. When K = 2, the MMA correspond to
two vertices of a line segment. For K = 3, they form three
vertices of an equilateral triangle. In the case of K = 4, the
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MMA correspond to the four vertices of a regular tetrahe-
dron. This geometrical phenomenon demonstrates that the
anchors generated by our MMA strategy are confined to
K — 1 dimensions space, which is more compact compared
to the d; dimensions of fixed anchors in the original data
space and the K dimensions of orthogonal anchors. The
lower-dimensional manifold on which our MMA are dis-
tributed offers advantages in measuring distances for clus-
tering tasks in high-dimensional data space.

A detailed comparison of the properties of fixed, opti-
mized, and the proposed MMA anchors is in the Appendix.

3.3 MMA Guidance for Multi-view Clustering

Having obtained a set of rationally designed anchors p* by
MMA, we aim to establish mappings from multiple views to
these shared optimal anchors. Given the multi-view dataset
X = {X®}V | composed of V views and N instances,
where X() € RV*4i and d; is the dimension of the samples
from ¢-view. Typically, we have the following objective:

V
Z’V?IIX(” ~BuPY|% + A|B %

i=1

min
B,{P(H)}Y

®)

=107
st POPO" — 1 B>0,Blg =1xn,v 1y = L.
In Eq. (5), u* € REXXK is fixed to be our designed MMA.
The cross view B € RV*X is the new consensus represen-
tation of multi-view data. P(Y) € RX*di is the i-th view
projection between MMA space and original data space.

In the following, we employ the coordinate descent
method to solve the optimization problem Eq. (5), optimiz-
ing one variable at a time while keeping the others fixed.
Specifically, the optimization comprises three steps:

1) Optimize {P("}}_, while fixing B and ~. For each
view, the optimization goal w.r.t. P(Y) can be simplified to
maxp (i) Tr(P(i)TMZv) by expanding the objective and ig-
noring irrelevant terms, where M; = u*TBTX(i). Assum-
ing the singular value decomposition (SVD) of M; is M; =
U,,%,, V., the optimal P(*) is given by P*) = U,, V|
(Wang et al. 2019).

2) Optimize B while fixing v and {P®} . The
optimization problem can be rewritten as the following
Quadratic Programming (QP) problem. For each row in B,

(6)

where b; = B[j’:] € RY™K refers to the j-th row of B.
Q ZZV y Y ,u*T + Mg is a symmetric matrix, and
= - Zl ) nyX(; ]P(i)Tu*T. Therefore, the optimiza-
tion problem for B is transformed into solving QP problems
for each row b;, which can be efficiently solved and paral-
lelized to accelerate the calculation.
3) Optlmlze ~ while fixing B and {P("}}
= X0~ BuPO;
problem min, Zz LVEBi, sty 'L 1,7 > 0, where
~ = [y1;- -+ ;7] € RY. The optimal « can be obtained by

Yi =

1
Ir][l)iniijb;r +chT, st.bj1=1,b; >0,

_,- Setting
%, we can obtain the following

E‘H

i according to the Cauchy-Schwarz inequality.

1%

>

|

i



Algorithm 1: MMA guidance for multi-view clustering

Input: Multi-view data {X®1}Y_ constant C, clusters K.
Initialize: Initialize B by concatenating the identity matrix
and the zero matrix. Initialize ; with the average weight %

1: Generate Max-Mahalanobis Anchors p* by Eq. (4).
: while not converged do
Update P¥) = U,, V.
Update B by solving problem Eq. (6).

1

B
v -
i=1 B;

Update ;

2
3:
4:
5 =
6: end while

Output: Perform k-means on the left singular vector Uy, of
B to obtain the final clustering results.

The optimization process is delineated in Algorithm 1
while the overall algorithm, including the generation of
MMA, is detailed in the appendix. To demonstrate the guid-
ance of our MMA on the consensus representation learn-
ing, we derive the first-order derivative® of the objective
function in Eq. (5) w.r.t. B, which is given by V7 (B) =
2BE — 2Gpu* ', where G = 32V 2XOP® " and E =

ZL Vu* u*T + Al k. After each gradient update, the new
consensus representation can be formulated as:

(N

Eq. (7) shows that the new representation is actually an
interpolation between the previous one and our MMA,
ie. u*. Given a suitable hyperparameter A, the new data
representation B will progressively converge towards our
MMA throughout the iteration. Specifically, the whole ob-
jective continually adjusts the data representation to better
align with the underlying structure expressed by our well-
designed MMA. This alignment process facilitates cluster
separation and enhances the learned representation’s overall
discriminative ability.

Bi11 =B; - VJ(B) =B:(Ix —2E) + 2G,u*T.

4 Experiment

This section compares MAGIC with state-of-the-art meth-
ods. We first introduce the datasets, compared methods and
the experimental setup, followed by the detailed analysis.

4.1 Experimental Setup

We conduct experiments on ten widely-used datasets: BBC,
Wikipedia, Reuters, 100Leaves, Cora, Wiki_fea, ALOI-100,
VGGFace, YouTubeFace, CIFAR100, denoted as Ds1-Ds10
in following figures for simplicity. Detailed information
is presented in the appendix. We compare our approach
with nine methods that encompass both fixed-anchor-based
MVC methods (LMVSC (Kang et al. 2020b), SFMC (Li
et al. 2020)) and optimized-anchor-based methods (FPMVS
(Wang et al. 2021), OMSC (Chen et al. 2022b), AIMC (Chen
et al. 2022a) and RCAGL (Liu et al. 2024b)). We also in-
cluded BMVC (Zhang et al. 2018), a efficient algorithm
for large-scale MVC, along with state-of-the-art approaches

“We omit the constraints for the purposes of interpretation.
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such as AWMVC (Wan et al. 2023) for large-scale MVC and
SMSC (Ma et al. 2024) for subspace MVC.

We adopt the officially released codes for fair comparison.
For methods requiring k-means, we run 50 times to obtain
the best results. Optimal parameters are determined via grid
search within established ranges. The constant C' was set
to 1, simplifying hyperparameter tuning to only balance pa-
rameter A, which is explored within {0.01, 1, 10, 100, 1000}
based on previous studies We utilized widely used clustering
metrics such as Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), Purity and Fscore, where higher values indi-
cate better performance. All experiments are conducted us-
ing MATLAB 2023b on the system equipped with an AMD
EPYC 7513 32-Core Processor and 64GB of memory.

4.2 Clustering Performance

We compare our method with nine competing algorithms on
ten datasets. The comparison results are presented in Tab. 2,
from which the following observations can be drawn.

(1) Our method surpasses competitors on most metrics,
achieving the highest ACC and NMI across all datasets.
It improves by 18.25%, 7.92%, 6.00%, 11.08%, and
7.22% over the second-best method on the BBC, Reuters,
100Leaves, Cora, and Wiki_fea datasets, respectively, with
similar gains across other metrics. This demonstrates the su-
periority of our approach’s clustering performance.

(2) Our method shows robust performance across diverse
datasets, from text to image domains, demonstrating adapt-
ability to different multi-view data types. It also excels on
datasets with many clusters, achieving the best ACC, NMI,
and F-score on ALOI-100, VGGFace, and CIFAR100, high-
lighting its effectiveness in complex clustering scenarios.

(3) Our MAGIC method consistently outperforms fixed-
anchor-based MVC methods (LMVSC and SFMC) and
optimized-anchor-based MVC methods (FPMVS, OMSC,
AIMC, and RCAGL) across all datasets, demonstrating the
effectiveness of our well-designed anchor properties and
model validity. Besides, optimized-anchors methods gener-
ally outperform fixed-anchor methods due to the orthogonal
constraints that promote diversity and balance of anchors.

To illustrate our method’s advantages, we visualize the
new data representations B and optimal anchors p* in
Fig. 1, comparing them to FPMVS and OMSC on BBC and
Wiki_fea datasets. In the left panel of Fig. 1, in terms of BBC
dataset, the anchors (red pentagrams) in FPMVS and OMSC
collapse, causing the representations (dots) to be incorrectly
aggregated. However, our method achieves a more spatially
diverse placement of anchors, leading to more discrimina-
tive representations, as reflected in the more dispersed dis-
tribution of dots. On the Wiki_fea dataset in the right panel of
Fig. 1, our approach achieves a more balanced anchor distri-
bution than others, leading to compact intra-cluster and dis-
tinct inter-cluster separations. This demonstrates the effec-
tiveness of our anchors in improving clustering structures.
The visual evidence aligns with quantitative results, high-
lighting our method’s ability to enhance Diversity, Balance
and Compactness, reducing representation collapse and im-
proving representation learning across multiple views.



Dataset BMVC LMVSC SFMC FPMVS OMSC AIMC AWMVC SMSC RCAGL Proposed
ACC
BBC 5591 40.29 33.58 32.26 3591 27.15 65.55 37.23 54.75 83.80
Wikipedia 19.05 21.79 46.75 32.61 37.95 56.85 23.95 32.32 30.88 60.90
Reuters 35.67 39.83 17.25 41.42 45.42 46.58 44.25 47.50 47.58 55.50
100Leaves 71.81 55.75 70.88 34.88 36.56 31.75 72.13 64.81 60.56 78.13
Cora 32.57 33.20 30.28 55.76 55.54 31.50 39.18 42.25 50.44 66.84
Wiki_fea 43.16 18.70 20.03 31.47 36.74 54.29 21.70 41.42 30.81 61.51
ALOI-100 62.86 55.32 67.20 32.95 35.02 31.60 69.22 53.20 3941 73.77
VGGFace 10.29 7.48 3.67 9.70 9.71 10.30 14.52 9.41 12.97 15.61
YouTubeFace 47.58 78.79 35.61 71.49 78.26 76.02 83.61 OOM 78.68 86.55
CIFAR100 7.71 7.27 1.60 7.16 7.49 7.39 10.77 OOM 9.58 11.82
NMI
BBC 29.10 10.09 1.87 2.97 6.86 2.69 41.33 18.95 30.34 62.31
Wikipedia 6.08 6.47 48.71 17.34 25.60 53.92 11.31 19.75 17.36 54.06
Reuters 16.24 21.40 1.46 21.10 20.41 24.54 20.14 22.63 26.04 30.57
100Leaves 86.22 79.02 86.33 70.22 74.06 71.32 85.48 82.68 84.43 90.36
Cora 10.10 6.93 0.54 30.02 29.78 10.05 24.08 20.68 31.23 45.43
Wiki_fea 35.84 5.14 14.31 17.15 21.12 51.87 7.83 31.37 15.02 54.66
ALOI-100 76.36 72.58 75.73 64.39 68.56 64.93 81.90 69.16 70.67 83.05
VGGFace 14.48 941 1.59 12.75 13.12 14.25 17.72 11.06 16.55 19.27
YouTubeFace 55.84 82.49 48.46 77.40 82.83 83.35 83.66 OOM 80.89 84.81
CIFAR100 13.50 13.57 1.79 13.62 14.19 14.26 17.83 OOM 17.57 17.83
Purity
BBC 55.91 87.03 33.87 37.37 40.58 34.60 65.55 39.12 78.10 83.80
Wikipedia 22.37 46.18 51.08 35.79 43.00 60.90 26.70 34.63 35.50 61.62
Reuters 39.83 48.50 17.42 45.33 45.83 46.58 46.58 47.50 52.00 57.25
100Leaves 74.81 67.94 72.75 36.63 36.94 32.81 75.06 68.06 80.44 81.00
Cora 36.48 95.61 30.39 55.76 55.54 38.48 46.20 46.79 63.89 66.84
Wiki_fea 47.17 36.36 23.17 33.67 38.97 60.68 25.47 43.86 34.12 62.81
ALOI-100 64.95 64.51 68.20 33.61 36.15 32.82 70.84 55.25 75.22 75.08
VGGFace 11.83 10.42 3.84 9.97 10.14 10.83 15.83 10.41 18.81 16.65
YouTubeFace 55.26 83.30 42.06 76.22 83.03 84.90 83.74 OOM 84.80 86.57
CIFAR100 8.51 10.08 1.88 7.34 7.63 7.56 12.09 OOM 21.15 12.89
Fscore

BBC 42.90 37.61 37.97 27.59 28.75 24.77 51.38 40.88 48.55 73.64
Wikipedia 12.42 17.62 32.26 21.12 26.65 49.42 15.04 20.52 19.09 50.72
Reuters 26.70 28.87 28.41 30.64 32.86 33.22 30.86 32.51 33.79 40.35
100Leaves 62.25 41.54 35.48 22.42 20.82 17.51 62.28 53.57 47.37 71.23
Cora 23.41 30.88 30.39 37.35 37.16 21.91 31.70 29.85 38.43 48.39
Wiki_fea 35.92 15.82 19.09 21.46 23.77 48.07 14.32 30.97 19.30 54.84
ALOI-100 50.04 41.31 12.05 17.99 19.50 13.32 57.73 35.43 24.06 59.73
VGGFace 5.34 3.73 4.15 5.75 5.70 5.79 7.50 4.21 6.73 8.03
YouTubeFace 42.02 77.38 29.40 69.60 74.63 77.77 83.28 OOM 66.49 79.78
CIFAR100 3.47 3.01 1.98 3.40 3.46 3.40 449 OOM 4.14 5.01

Table 2: The clustering performance comparison across ten datasets. The best results are in bold, while the second-best results
are indicated with an underline. “OOM” denotes that the algorithm encountered an out-of-memory error on our device.

4.3 Running Time

The overall time complexity of the proposed MAGIC
method is O(N). Due to space limitations, the detailed anal-
ysis process, as well as the complexity reduction achieved
compared to optimized-anchor methods, is provided in the
appendix. Runtime comparison across all datasets are shown
in Fig. 2, with y-axis on a log;, scale. Our method shows
competitive efficiency, performing well on smaller datasets
like BBC and Wikipedia, outpacing several baselines. Our
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approach maintains reasonable runtime while some methods
fail to complete for larger, complex datasets (e.g., VGGFace,
YouTubeFace, CIFAR100). Despite occasional faster run-
times from BMVC and AIMC, our method consistently of-
fers superior performance with acceptable runtime.

4.4 Convergence and Parameter Analysis

The convergence curve in Fig. 3a using Wiki_fea as an exam-
ple, shows that the objective function value decreases mono-
tonically and then stabilizes, confirming the convergence of
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Figure 1: Comparison of feature and anchor visualizations
using t-SNE on BBC and Wiki_fea datasets.

the algorithm. The accuracy curve steadily increases during
the iterations, reaching its maximum value when the objec-
tive converges, and then remains constant.

The proposed method has one hyperparameter A, which
balances the regularization term. Fig. 3b shows accuracy re-
sults across datasets under different A. Our method performs
stable, achieving satisfactory accuracy for A ranging from 10
to 1000, demonstrating robustness to A selection. Generally,
we recommend A = 10 for most datasets.

4.5 Ablation Study

We conduct an ablation study to assess the effectiveness of
proposed MMA in anchor-based MVC methods. Orthog-
onal anchors in SMVSC, OMSC and AIMC are replaced
with our proposed MMA, denoted by appending “-MMA”.
For a fair comparison, the number of anchors is set to K
and A indicates the variation relative to the original method.
Tab. 3 shows the accuracy improvements with MMA substi-
tution. SMVSC-MMA significantly outperforms SMVSC,
with improvements from +10.08% to +47.89%. Similarly,
AIMC-MMA consistently surpasses AIMC. OMSC-MMA
improves in most cases, notably on YouTubeFace dataset
(+4.98%), with a slight decrease on ALOI-100. These re-
sults validate our MMA’s effectiveness in boosting MVC
accuracy, highlighting its potential for further applications.
A more detailed comparison between fixed-anchors and
optimized-anchors is provided in the appendix.
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Figure 3: Convergence curves and parameter analysis.

Method BBC 100Leaves ALOI-100 YouTubeFace

SMVSC 3591 38.19 34.82 76.47
SMVSC-MMA 83.80 78.13 73.77 86.55

A (+47.89)  (+39.94) (+38.95) (+10.08)
OMSC 3241 34.31 3291 71.49
OMSC-MMA 3591 34.94 32.69 76.47

VAN (+3.50) (+0.62) (-0.22) (+4.98)
AIMC 27.15 31.75 31.60 76.02
AIMC-MMA 28.91 32.56 33.91 76.44

A (+1.75) (+0.81) (+2.31) (+0.42)

Table 3: Ablation study of MMA’s impact on accuracy.

5 Conclusion

This paper introduces MAGIC, a novel approach address-
ing the limitations of existing anchor-based MVC meth-
ods. Firstly, we theoretically formalize the properties of
Diversity, Balance and Compactness inherent in anchors.
Then, we propose a rational strategy MMA, considering
inter-anchor Mahalanobis distances to meet the properties
with theoretical guarantees. Furthermore, MAGIC itera-
tively aligns features with well-designed MMA, enhancing
representation discriminability and cluster clarity, thereby
improving MVC performance. Experiments confirm our
MMA'’s superiority in MVC. Additionally, our approach is
applicable to any task requiring anchors. Future work in-
cludes a deeper exploration of anchor properties and their
integration with multi-view scenarios.
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